# A Gentle Introduction To Math Behind Neural Networks

## Let’s dive into the Mathematics behind Neural Networks and Deep Learning

Today, with open source machine learning software libraries such as TensorFlow, Keras, or PyTorch we can create a neural network, even with high structural complexity, with just a few lines of code. Having said that, the mathematics behind neural networks is still a mystery to some of us, and having the mathematics knowledge behind neural networks and deep learning can help us understand what’s happening inside a neural network. It is also helpful in architecture selection, fine-tuning of deep learning models, hyperparameters tuning, and optimization.

# Introduction

I had ignored understanding the mathematics behind neural networks and deep learning for a long…

# Go Programming Language for Artificial Intelligence and Data Science of the 20s

## Golang may very soon replace Python

30 years ago, Python made its first appearance. But It took 20 years to gain appreciation from the developers. Fast-forward to 2019, it became the 2nd most loved language among developers.¹

Its growth over the past has been huge, especially over the past 5 years. Python became the machine learning and data science developers’ go-to language.

Python’s dominance in these fields will certainly be huge for the next few years. But it has got some serious disadvantages when compared to newer languages. This could be a roadblock for developers of the 20s.

This is the right time to examine the…

# How to Simulate the Most Famous Counter-Intuitive Probability Problem— using Python

## Motivation

Recently I came across the counter-intuitive Monty Hall puzzle. Initially, I was surprised by the answer and wasn’t convinced. When I finally understood it, I was even more surprised and this changed my intuition for Probability. I hope this article will help you get a better understating of Probability and Statistics.

# The Monty Hall Problem

The Monty Hall problem was originally posed and solved by Steve Selvin. But it got its name from Monty Hall, who hosted it in a TV game show. Okay, here’s a modified version of the Monty Hall problem.

• There are three cards — two empty cards and one card…

# Introduction

In this tutorial, we’ll build a simple neural network (single-layer perceptron) in Go language, completely from scratch. We’ll also train it on sample data and perform predictions. Creating your own neural network from scratch will help you better understand what’s happening inside a neural network and the working of learning algorithms.

# What’s a Perceptron?

Perceptrons — invented by Frank Rosenblatt in 1958, are the simplest neural network that consists of n number of inputs, only one neuron, and one output, where n is the number of features of our dataset.

Hence, our single-layer perceptron consists of the following components.

1. An input layer (x)

# A Gentle Introduction To Genetic Algorithms

Genetic Algorithms are based on Charles Darwin’s theory of natural selection and are often used to solve problems in research and machine learning.

In this article, we’ll be looking at the fundamentals of Genetic Algorithms (GA) and how to solve optimization problems using them.

# What are Genetic Algorithms?

Genetic algorithms were developed by John Henry Holland and his students and collaborators at the University of Michigan in the 1970s and 1980s.

It is a subset of evolutionary algorithms, and it mimics the process of natural selection in which the fittest individuals survive and are chosen for cross-over to reproduce offsprings of the next-generation.

The…

# Deep Learning Algorithms For Solving Advanced Mathematical Problems

## AI is Getting Better at Math

Ever tried building a neural network model to solve simple math problems? Like multiplication of two numbers or square of a number? Then you would have probably realized neural networks are not designed to solving these simple problems. You would need a comparatively complex model just to approximate the square of a number. It wouldn't be perfect either.

Isn’t this a real problem? Today precision and accuracy in numbers are significant in any cutting-edge technology. A small variation in results can cause an extreme failure to the system where the AI is deployed. I didn’t mean that it is impossible… 